作者单位
摘要
华东师范大学 精密光谱科学与技术国家重点实验室,上海 200241
为了制备高质量表面周期结构,利用法布里-珀罗腔对飞秒激光进行时域整形,输出子脉冲间隔在1~300 ps内灵活可调的飞秒激光脉冲串,在硅表面诱导亚波长周期条纹。实验结果显示,利用飞秒激光脉冲串诱导得到的亚波长周期条纹明显优于原始高斯光诱导的亚波长周期条纹。利用子脉冲间隔为100 ps的脉冲串诱导的亚波长条纹最佳,条纹周期为1 008 nm,结构取向角为2.8°,边缘粗糙度为3.9 nm,可达到光刻工艺的标准。
激光加工 激光诱导表面周期结构 亚波长周期条纹 法布里-珀罗腔 飞秒激光脉冲串  Laser processing Laser induced periodic surface structures Near-subwavelength ripples Fabry-Perot cavity Femtosecond laser pulse train Si 
光子学报
2023, 52(7): 0752301
Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
2 Huawei Technologies Co, Ltd., Bantian Longgang District, Shenzhen 518129, China
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
This paper reports the fabrication of regular large-area laser-induced periodic surface structures (LIPSSs) in indium tin oxide (ITO) films via femtosecond laser direct writing focused by a cylindrical lens. The regular LIPSSs exhibited good properties as nanowires, with a resistivity almost equal to that of the initial ITO film. By changing the laser fluence, the nanowire resistances could be tuned from 15 to 73 kΩ/mm with a consistency of ±10%. Furthermore, the average transmittance of the ITO films with regular LIPSSs in the range of 1200–2000 nm was improved from 21% to 60%. The regular LIPSS is promising for transparent electrodes of nano-optoelectronic devices—particularly in the near-infrared band.
transparent nanowires periodic surface nanostructures femtosecond laser direct writing ITO film anisotropic electrical conductivity 
Opto-Electronic Science
2023, 2(1): 220002
Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3 State Key Laboratory of Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
Over the past two decades, femtosecond laser-induced periodic structures (femtosecond-LIPSs) have become ubiquitous in a variety of materials, including metals, semiconductors, dielectrics, and polymers. Femtosecond-LIPSs have become a useful laser processing method, with broad prospects in adjusting material properties such as structural color, data storage, light absorption, and luminescence. This review discusses the formation mechanism of LIPSs, specifically the LIPS formation processes based on the pump-probe imaging method. The pulse shaping of a femtosecond laser in terms of the time/frequency, polarization, and spatial distribution is an efficient method for fabricating high-quality LIPSs. Various LIPS applications are also briefly introduced. The last part of this paper discusses the LIPS formation mechanism, as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.
laser-induced periodic structures (LIPSs) formation mechanisms femtosecond pulse shaping pump-probe imaging structural color birefringent effects optical absorption photoluminescence 
Opto-Electronic Science
2022, 1(6): 220005
Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3 State Key Laboratory of Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
Femtosecond laser-induced periodic surface structures (LIPSS) have several applications in surface structuring and functionalization. Three major challenges exist in the fabrication of regular and uniform LIPSS: enhancing the periodic energy deposition, reducing the residual heat, and avoiding the deposited debris. Herein, we fabricate an extremely regular low-spatial-frequency LIPSS (LSFL) on a silicon surface by a temporally shaped femtosecond laser. Based on a 4f configuration zero-dispersion pulse shaping system, a Fourier transform limit (FTL) pulse is shaped into a pulse train with varying intervals in the range of 0.25–16.2 ps using periodic π-phase step modulation. Under the irradiation of the shaped pulse with an interval of 16.2 ps, extremely regular LSFLs are efficiently fabricated on silicon. The scan velocity for fabricating regular LSFL is 2.3 times faster, while the LSFL depth is 2 times deeper, and the diffraction efficiency is 3 times higher than those of LSFL using the FTL pulse. The formation mechanisms of regular LSFL have been studied experimentally and theoretically. The results show that the temporally shaped pulse enhances the excitation of surface plasmon polaritons and the periodic energy deposition while reducing the residual thermal effects and avoiding the deposition of the ejected debris, eventually resulting in regular and deeper LSFL on the silicon surface.
Photonics Research
2021, 9(5): 05000839

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!